
Lycée Les 3 Sources Bourg-Lès-Valence
NSI 1re Année 2025-26

Autotest no2 – correction

Exercice 1 : Lors de la phase finale d’un jeu, les 4 candidats de l’équipe finaliste ont chacun
un buzzer. Les 4 buzzers sont reliés à 4 lampes à l’aide de circuits logiques complexes. Ap-
puyer sur un buzzer éteint permet de l’allumer et appuyer une nouvelle fois l’éteint. Les 4
candidats doivent trouver quels buzzers allumer ou pas pour obtenir le motif demandé sur
les ampoules. Ils doivent reproduire 4 motifs en 30 s pour gagner.
Partie A : Circuits logiques

Pour simplifier, on
donne séparément
les circuits de chaque
ampoule. Les buzzers
sont A, B, C et D, et les
lampes sont L3 à L0.
On met la valeur 1 à
un buzzer ou à une am-
poule allumée et 0 s’ils
sont éteints.

A

B

C

D

L3

A

B

C

D

L1

A

B

C

D

L2

A

B

C

D

L0

1) Déterminer les valeurs à donner aux buz-
zers pour obtenir les motifs demandés sur les
lampes.

A B C D L3 L2 L1 L0
0 0 0 1 0 1 1 0
1 0 0 1 1 1 1 0
0 0 1 0 0 1 0 1
1 0 1 1 1 1 1 1Partie B : Nombres binaires

Afin de programmer le processeur contrôlant le dispositif de vérification, qui permet de dé-
terminer si l’équipe gagne ou pas, il faut faire quelques travaux préliminaires sur le binaire.
Les résultats attendus sont stockés dans un seul nombre. Par exemple, si on attend, en bi-
naire, 01102, 11102, 01012 puis 11112, alors le nombre stocké sera 11110101111001102.
Pour simplifier l’écriture de ce nombre, on utilisera l’hexadécimal.
2) Expliquer pourquoi un nombre exprimé sur 4 bits en binaire peut être exprimé avec un

seul chiffre en hexadécimal. Solution : Avec 4 chiffres en binaire, on peut aller de 0, 15,
ce qui est exactement les chiffres utilisés en hexadécimal.

3) Donner l’écriture en hexadécimal des 4 nombres représentant les lampes de la partie A.
Solution : 01102 = 6 = 616, 11102 = 14 = E16, 01012 = 5 = 516 et 11112 = 15 = F16.

4) On admet que si on recolle les nombres écrits en hexadécimal ou si on recolle les nombres
écrits en binaire sur 4 bits, c’est la même chose.
Donner l’écriture hexadécimale de 11110101111001102. Solution : F5E616

5) Déterminer les 4 motifs, dans l’ordre dans lequel ils seront demandés, correspondant à
CB2716. Solution : 716 = 01112, 216 = 102, B16 = 11 = 10112 et C16 = 12 = 11002.

Afin d’extraire le premier nombre attendu du résultat global, on utilise le
ET bit à bit. Pour cette opération, on applique l’opération booléenne ET
entre le dernier bit du premier nombre et celui du deuxième, puis le ET
entre l’avant-dernier bit de chacun des deux nombres et ainsi de suite. Il
n’y a pas de retenues, comme dans une addition.

0 1 1 0 1
ET 0 1 0 1 1

0 1 0 0 1

6) Déterminer le résultat du ET bit à bit entre 1101012 et 1001102. Solution :
1 1 0 1 0 1

ET 1 0 0 1 1 0
1 0 0 1 0 0

1/3

7) Afin de ne garder que les 4 derniers bits d’un nombre binaire, avec quel nombre est-ce
qu’il faut faire le ET bit à bit? Donner le résultat en binaire et en base 10.
Solution : En faisant le ET avec 11112 = 15, on garde les 4 derniers bits.

Afin de passer au résultat attendu suivant, il va falloir supprimer les 4 derniers chiffres du
grand nombre. Il y a des instructions spécifiques en assembleur pour faire cela, mais on peut
aussi le faire facilement en utilisant la division euclidienne.
8) Par quel nombre, exprimé en base 10, faut-il diviser un nombre pour décaler ses chiffres

de 4 rangs vers la droite? Par exemple, pour passer de 110100102 à 11012.
Solution : À chaque fois qu’on divise par 2, on décale d’un rang vers la droite. Il faut
donc diviser 4 fois par 2, ce qui revient à diviser par 24 = 16.

Partie C : Assembleur
Pour tester les résultats donnés par les joueurs, la production du jeu utilise un appareil
contenant un processeur 16 bit. Les 4 lampes L3L2L1L0 des joueurs sont directement reliées
au registre R10 du processeur. On associe leur état à un nombre binaire de 4 bits, avec la
valeur de L3 correspondant au bit de gauche et celle de L0 au bit de droite.
Le programme utilisé est le suivant, ainsi que l’explication des instructions :

1 init MOV R0, #0xCB27
2 debut MOV R1, R10
3 AND R2, R0, #15
4 CMP R1, R2
5 BNE perdu
6 LSR R0, R0, #4
7 CMP R0, #0
8 BNE debut
9 gagne END

10 perdu END

Assembleur Signification
MOV dest, op1 dest = op1
AND dest, op1, op2 Fait le ET bit à bit entre

op1 et op2. Place le
résultat dans dest.

LSR dest, op1, op2 Enlève les op2 bits de
droite de op1. Place le
résultat dans dest

CMP op1, op2 Aller à l’instruction
BNE label label si op1 , op2

Pour simplifier, on ne tient pas compte des mécanismes permettant de synchroniser la
boucle avec les réponses des joueurs. On suppose aussi que lorsqu’on arrive en gagne, un
bout de code correspondant à la victoire est exécuté. De la même manière, si on arrive en
perdu, un bout de code correspondant à une défaite est exécuté.
9) Quelles sont les deux conditions qui font sortir de la boucle? Solution : On sort si à la

ligne 4, R1 , R2 ou si à la ligne 7 R0 , 0. C’est-à-dire si les joueurs rentrent un mauvais
code, et dans ce cas ils perdent, ou s’il n’y a plus de code à tester, et là ils gagnent.

10) À quelle opération arithmétique expliquée dans la partie B correspond la ligne 6?
Solution : Cela revient à divisier par 16.

11) À quoi sert le contenu du registre R0? Solution : Il contient les codes à tester.
12) Si les joueurs trouvent les bonnes combinaisons à chaque fois, quelles sont les valeurs

successives de R0, exprimées en hexadécimal?
Solution : Il vaudra successivement CB27, CB2, CB, C et enfin 0.

Exercice 2 : On considère la fonction suivante, qui prend deux listes de même longueur.

def inconnu(liste1, liste2):
nouvelle_liste = []
for i in range(len(liste1)):

if liste2[i] == 1:
nouvelle_liste.append(liste1[i])

compléter une ligne du tableau
return nouvelle_liste

2/3

1) Compléter le tableau ci-contre pour l’exécution de inconnu([3, 1, 9, 0], [1, 1, 0, 1]).

i liste1[i] liste2[i] nouvelle_liste

[]

0 3 1 [3]

1 1 1 [3, 1]

2 9 0 [3, 1]

3 0 1 [3, 1, 0]

2) Quelle est la valeur renvoyée pour inconnu([1, 1, 0, 1, 0], [1, 0, 0, 1, 1])?
Solution : On obtient [1, 1, 0].

3) Décrire en français ce que fait cette fonction. Par exemple : “elle fait la somme de tous les
éléments de la liste”.
Solution : La fonction renvoie une nouvelle liste qui ne contient que les éléments de
liste1 tels que l’élement de liste2 de même indice vaut 1.

3/3

