
Lycée Les 3 Sources Bourg-Lès-Valence
NSI 1re Année 2025-26

Devoir surveillé no2 – correction

Représentation des données : types construits

Exercice 1 : (2,5pt) On considère les instructions suivantes :

>>> liste1 = [3, 7, 5, 1, 2, 4, 0]
>>> liste2 = [5, 6]
>>> liste3 = [0, 9, 4]

1) Que vaut chacune des expressions suivantes :
a) liste1[1] : 7
b) liste3 + liste2 : [0, 9, 4, 5, 6]
c) liste2[1] + liste1[2] : 11 (on fait la somme de 6 et de 5)
d) liste1[liste1[4]] : 5

2) On rajoute les instructions suivantes :

>>> liste4 = [5, 2, 1, 8]
>>> liste4.append(7)
>>> liste4.append(liste3[0])

Quelle est alors la valeur de liste4? [5, 2, 1, 8, 7, 0]

Exercice 2 : (2pt) On rappelle que range(N) renvoie successivement toutes les valeurs en-
tières allant de 0 à N-1 inclus.
Déterminer les listes obtenues à l’aide des expressions suivantes :
1) [2*i for i in range(5)] : [0, 2, 4, 6, 8]

(on multiplie par 2 chaque élément de [0, 1, 2, 3, 4])
2) [i for i in range(10) if i >= 5] : [5, 6, 7, 8, 9]

(on ne garde que les éléments supérieurs ou égaux à 5)

Algorithmique

Exercice 3 : (2pt) Écrire le code de la fonction indice qui prend en paramètre une va-
leur val et une liste valeurs et qui renvoie l’indice de la première occurrence de val dans
valeurs, s’il y en a une, et -1 sinon. Vous ne pouvez pas utiliser la fonction index.

def indice(val, valeurs):
for i in range(len(valeurs)):

if val == valeurs[i]:
return i

return -1

>>> indice(4, [3, 4, -4, 6, 4])
1
>>> indice(6, [3, 4, -4, 6, 4])
3

>>> indice(-4, [3, 4, -4, 6, 4])
2
>>> indice(7, [3, 4, -4, 6, 4])
-1

1/5

Exercice 4 : (2pt) Écrire le code de la fonction maximum qui prend en paramètre une liste
nombres et qui renvoie la plus grande valeur contenue dans nombres. On suppose que la
liste n’est pas vide. Vous ne pouvez pas utiliser la fonction max.

def maximum(nombres):
maxi = nombres[0]
for v in nombres:

if v > maxi:
maxi = v

return maxi

>>> maximum([5, 1, 8, 14, 2])
14
>>> maximum([15])
15

>>> maximum([-9, -27, -2, -48])
-2
>>> maximum([9, 2, -57, 1, 8])
9

Exercice 5 : (3pt) On considère la fonction ci-dessous.

def inconnu(liste1, liste2):
nouvelle_liste = []
for i in range(len(liste1)):

if liste1[i] > liste2[i]:
nouvelle_liste.append(liste1[i])

else:
nouvelle_liste.append(liste2[i])

completer une ligne du tableau
return nouvelle_liste

1) Compléter le tableau ci-contre pour l’exécution de inconnu([5, 4, 2, 7], [6, 7, 1, 4]).
Entourer la valeur renvoyée à la fin.

i liste1[i] liste2[i] nouvelle_liste

[]

0 5 6 [6]

1 4 7 [6, 7]

2 2 1 [6, 7, 2]

3 7 4 [6, 7, 2, 7]

2) Quelle est la valeur renvoyée pour inconnu([3, 2, 6, 7, 9, 3], [3, 1, 7, 6, 9, 4])?
[3, 2, 7, 7, 9, 4]

3) Décrire en français ce que fait cette fonction. Par exemple : “elle fait la somme de tous les
éléments de la liste”. On suppose que liste1 et liste2 ont la même longueur.
Cette fonction renvoie une liste de même longueur que les deux autres en prenant à
chaque fois le nombre les plus grand entre les deux éléments de même indice.

2/5

Exercice type bac

Exercice 6 : (18,5pt) Une commerçante souhaite fabriquer un petit dispositif à mettre dans
sa vitrine afin d’attirer le regard. Elle pense à un système avec des LEDs qui clignotent
alternativement. Pour simplifier, on va supposer qu’il n’y a que 4 LEDs. Soit la 1re et la 3e

sont allumées, soit ce sont les deux autres.
Partie A : Circuits logiques
La première idée de la commerçante, qui aime bien bricoler, c’est de
faire un circuit. Elle veut 2 entrées : A et C. A est un interrupteur.
Lorsqu’il est allumé, le dispositif est en marche. C est une horloge et
selon si elle est à 0 ou à 1, c’est soit la LED L1, soit la LED L2 qui est
allumée. Cela correspond à la table de vérité ci-contre.

A C L1 L2
0 0 0 0
0 1 0 0
1 0 1 0
1 1 0 1

Elle hésite entre plusieurs circuits.
A

C

L1

L2

A

C

L1

L2

A

C

L1

L2

A

C

L1

L2

A

C

L1

L2

A

C

L1

L2

1) Entourer tous les circuits qui correspondent à la table.
Il y a des copies de ces circuits à la page 6 qui peuvent
vous servir de brouillon.

NOT AND XOR

Partie B : Nombres binaires
Finalement, elle trouve que les circuits logiques ne donnent pas assez de flexibilité. Si elle
veut rajouter des LEDs ou modifier le motif, elle devra changer le circuit. Elle préfère utiliser
un processeur programmable afin d’avoir plus de flexibilité.
Pour préparer le programme, elle a besoin de travailler quelques notions de binaire.

Tout d’abord, on note les LEDs L3, L2, L1 et L0, et on les
représente comme si contre. Les lampes allumées sont en
blanc et celles éteintes sont en gris.

L3 L2 L1 L0 L3 L2 L1 L0

On associe l’état des LEDs à un nombre binaire. Le bit de gauche, celui correspondant à la
plus haute puissance de 2, est associé à L3, alors que celui de droite, qui correspond à la
plus petite puissance de 2, est associé à L0. Par exemple 11012 correspond à .
Ces nombres sont ensuite écrits en base 10. L’exemple précédent s’écrit donc 13.

2) Pour les lignes 2 et 3 du tableau ci-contre, écrire le code, c’est-
à-dire la valeur décimale, correspondant aux lampes allumées.

3) Pour les lignes 4 et 5, colorier les lampes éteintes pour obtenir
le motif correspondant au code donné.

Code Lampes

13

5

10

7

9

3/5

Au lieu de faire un simple clignotement, elle envisage plutôt de faire un défilement des
lampes.
4) Par quel nombre, en base 10, faut-il multiplier un nombre pour décaler tous ses chiffres

en binaire d’un rang vers la gauche? Par exemple, pour passer de 11012 à 110102. Par 2
Le problème avec cette méthode, c’est qu’au bout d’un moment, le nombre binaire finit par
avoir plus de 4 bits comme dans l’exemple de la question précédente. Pour régler cela, elle
souhaite utiliser le ET bit à bit entre deux nombres binaires.

On applique l’opération booléenne ET entre le dernier bit du premier
nombre et celui du deuxième, puis le ET entre l’avant-dernier bit de
chacun des deux nombres et ainsi de suite. Il n’y a pas de retenues,
contrairement à une addition.

1 0 0 0 1 1 0 1
ET 0 1 1 0 1 0 1 1

0 0 0 0 1 0 0 1

5) Effectuer l’opération ci-contre.

Afin de ne garder que les 4 derniers bits d’un nombre binaire, il faut
faire le ET avec 11112 = 15. Si le deuxième nombre a plus de 4 bits,
on rajoute des 0 à gauche de 11112.

0 1 0 1 1 0 1 1
ET 0 0 0 1 0 1 1 0

0 0 0 1 0 0 1 0

6) Effectuer les opérations ci-contre.

On peut remarquer que pour certains
nombres A,

�� ��A ET 1111 = A alors que pour
d’autres nombres B,

�� ��B ET 1111 , B .

0 0 0 1 0 1 1 0
ET 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 0

0 0 0 0 1 0 1 1
ET 0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1

7) Compléter les opérations ci-dessous avec le plus grand A tel que
�� ��A ET 1111 = A et le

plus petit B tel que
�� ��B ET 1111 , B .

0 0 0 0 1 1 1 1 = A
ET 0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1 = A

0 0 0 1 0 0 0 0 = B
ET 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 , B
8) Donner la valeur décimale des nombres A et B trouvés à la question précédente.

A = 15 et B = 16.

Partie C : Assembleur
Elle construit son appareil avec un processeur programmable utilisant un jeu d’instructions
de type ARM et des nombres codés sur 8 bits. Pour simplifier, on supposera que le contenu
du registre R10 commande l’affichage des LEDs. Par exemple, si on place 13 dans le registre
R10, alors les lampes afficheront .
Voici le programme qu’elle a écrit et la signification des instructions utilisées.

1 MOV R0, #5
2 debut ADD R1, R0, R0
3 AND R0, R1, #15
4 CMP R0, R1
5 BEQ affich
6 ADD R0, R0, #1
7 affich MOV R10, R0
8 B debut

Assembleur Signification
MOV dest, op1 dest = op1
ADD dest, op1, op2 dest = op1+ op2
AND dest, op1, op2 dest = op1 ET op2

Fait le ET bit à bit
entre op1 et op2

CMP op1, op2 Aller à l’instruction
BEQ label label si op1 = op2
B label Aller à label

Le programme contient une boucle infinie qui est arrêtée lorsque l’appareil est éteint.

4/5

Nom et prénom :

9) Remplir le tableau ci-contre corres-
pondant aux deux premiers tours de
boucle du programme. Laissez les
cases vides lorsqu’un registre n’a pas
encore de valeur (comme R1 et R10
au début. Vous pouvez aussi laisser
vide la ligne 6 si elle n’est pas exé-
cutée dans un tour de boucle. Vous
pouvez remplir les cases en binaire
et/ou en décimal.

ligne R0 R1 R10
1 5 = 0101
2 5 = 0101 10 = 1010
3 10 = 1010 10 = 1010
6 10 = 1010 10 = 1010
7 10 = 1010 10 = 1010 10 = 1010
2 10 = 1010 20 = 10100 10 = 1010
3 4 = 0100 20 = 10100 10 = 1010
6 5 = 0101 20 = 10100 10 = 1010
7 5 = 0101 20 = 10100 5 = 0101

10) Remplir de la même manière le ta-
bleau ci-contre, mais en remplaçant
la première ligne par MOV, R0, #3.

11) Compléter les lampes ci-dessous qui
correspondent au registre R10 à la fin
de chacun des tours de boucle.

ligne R0 R1 R10
1 3 = 0011
2 3 = 0011 6 = 0110
3 6 = 0110 6 = 0110
6 6 = 0110 6 = 0110
7 6 = 0110 6 = 0110 6 = 0110
2 6 = 0110 6 = 0110 6 = 0110
3 12 = 1100 12 = 1100 6 = 0110
6 12 = 1100 12 = 1100 6 = 0110
7 12 = 1100 12 = 1100 12 = 1100
2 12 = 1100 12 = 1100 12 = 1100
3 8 = 1000 24 = 11000 12 = 1100
6 9 = 1001 24 = 11000 12 = 1100
7 9 = 1001 24 = 11000 9 = 1001
2 9 = 1001 24 = 11000 9 = 1001
3 2 = 0010 18 = 10010 9 = 1001
6 3 = 0011 18 = 10010 9 = 1001
7 3 = 0011 18 = 10010 3 = 0011

12) Finalement, elle décide de rajouter 2 LEDs, pour un total de 6.
a) Quelle ligne doit être modifiée dans le programme pour pouvoir gérer les 6 lampes

et quelle modification doit-elle faire? Il faut mettre AND R0, R1,#63 à la ligne 3.
b) Déterminer les valeurs, en base 10, prises successivement par R10 si on remplace la

première ligne par MOV, R0, #18. 18, 36, 9, 18

5/5

Lycée Les 3 Sources Bourg-Lès-Valence
NSI 1re Année 2025-26

Devoir surveillé no2 – correction

Représentation des données : types construits

Exercice 1 : (2,5pt) On considère les instructions suivantes :

>>> liste1 = [3, 7, 5, 1, 2, 4, 0]
>>> liste2 = [5, 6]
>>> liste3 = [0, 9, 4]

1) Que vaut chacune des expressions suivantes :
a) liste1[2] : 5
b) liste2 + liste3 : [5, 6, 0, 9, 4]
c) liste3[2] + liste1[1] : 11 (on fait la somme de 4 et de 7)
d) liste1[liste1[4]] : 5

2) On rajoute les instructions suivantes :

>>> liste4 = [5, 2, 1, 8]
>>> liste4.append(7)
>>> liste4.append(liste3[0])

Quelle est alors la valeur de liste4? [5, 2, 1, 8, 7, 0]

Exercice 2 : (2pt) On rappelle que range(N) renvoie successivement toutes les valeurs en-
tières allant de 0 à N-1 inclus.
Déterminer les listes obtenues à l’aide des expressions suivantes :
1) [i+3 for i in range(5)] : [3, 4, 5, 6, 7]

(on ajoute 3 à chaque élément de [0, 1, 2, 3, 4])
2) [i for i in range(10) if i >= 6] : [6, 7, 8, 9]

(on ne garde que les éléments strictement supérieurs à 5)

Algorithmique

Exercice 3 : (2pt) Écrire le code de la fonction indice qui prend en paramètre une va-
leur val et une liste valeurs et qui renvoie l’indice de la première occurrence de val dans
valeurs, s’il y en a une, et -1 sinon. Vous ne pouvez pas utiliser la fonction index.

def indice(val, valeurs):
for i in range(len(valeurs)):

if val == valeurs[i]:
return i

return -1

>>> indice(4, [3, 4, -4, 6, 4])
1
>>> indice(6, [3, 4, -4, 6, 4])
3

>>> indice(-4, [3, 4, -4, 6, 4])
2
>>> indice(7, [3, 4, -4, 6, 4])
-1

1/5

Exercice 4 : (2pt) Écrire le code de la fonction maximum qui prend en paramètre une liste
nombres et qui renvoie la plus grande valeur contenue dans nombres. On suppose que la
liste n’est pas vide. Vous ne pouvez pas utiliser la fonction max.

def maximum(nombres):
maxi = nombres[0]
for v in nombres:

if v > maxi:
maxi = v

return maxi

>>> maximum([5, 1, 8, 14, 2])
14
>>> maximum([15])
15

>>> maximum([-9, -27, -2, -48])
-2
>>> maximum([9, 2, -57, 1, 8])
9

Exercice 5 : (3pt) On considère la fonction ci-dessous.

def inconnu(liste1, liste2):
nouvelle_liste = []
for i in range(len(liste1)):

if liste1[i] > liste2[i]:
nouvelle_liste.append(liste1[i])

else:
nouvelle_liste.append(liste2[i])

completer une ligne du tableau
return nouvelle_liste

1) Compléter le tableau ci-contre pour l’exécution de inconnu([5, 4, 1, 3], [4, 6, 7, 1]).
Entourer la valeur renvoyée à la fin.

i liste1[i] liste2[i] nouvelle_liste

[]

0 5 4 [5]

1 4 6 [5, 6]

2 1 7 [5, 6, 7]

3 3 1 [5, 6, 7, 3]

2) Quelle est la valeur renvoyée pour inconnu([3, 1, 6, 3, 2, 9], [3, 7, 6, 1, 4, 9])?
[3, 7, 6, 3, 4, 9]

3) Décrire en français ce que fait cette fonction. Par exemple : “elle fait la somme de tous les
éléments de la liste”. On suppose que liste1 et liste2 ont la même longueur.
Cette fonction renvoie une liste de même longueur que les deux autres en prenant à
chaque fois le nombre les plus grand entre les deux éléments de même indice.

2/5

Exercice type bac

Exercice 6 : (18,5pt) Une commerçante souhaite fabriquer un petit dispositif à mettre dans
sa vitrine afin d’attirer le regard. Elle pense à un système avec des LEDs qui clignotent
alternativement. Pour simplifier, on va supposer qu’il n’y a que 4 LEDs. Soit la 1re et la 3e

sont allumées, soit ce sont les deux autres.
Partie A : Circuits logiques
La première idée de la commerçante, qui aime bien bricoler, c’est de
faire un circuit. Elle veut 2 entrées : A et C. A est un interrupteur.
Lorsqu’il est allumé, le dispositif est en marche. C est une horloge et
selon si elle est à 0 ou à 1, c’est soit la LED L1, soit la LED L2 qui est
allumée. Cela correspond à la table de vérité ci-contre.

A C L1 L2
0 0 0 0
0 1 0 0
1 0 1 0
1 1 0 1

Elle hésite entre plusieurs circuits.
A

C

L1

L2

A

C

L1

L2

A

C

L1

L2

A

C

L1

L2

A

C

L1

L2

A

C

L1

L2

1) Entourer tous les circuits qui correspondent à la table.
Il y a des copies de ces circuits à la page 6 qui peuvent
vous servir de brouillon.

NOT AND XOR

Partie B : Nombres binaires
Finalement, elle trouve que les circuits logiques ne donnent pas assez de flexibilité. Si elle
veut rajouter des LEDs ou modifier le motif, elle devra changer le circuit. Elle préfère utiliser
un processeur programmable afin d’avoir plus de flexibilité.
Pour préparer le programme, elle a besoin de travailler quelques notions de binaire.

Tout d’abord, on note les LEDs L3, L2, L1 et L0, et on les
représente comme si contre. Les lampes allumées sont en
blanc et celles éteintes sont en gris.

L3 L2 L1 L0 L3 L2 L1 L0

On associe l’état des LEDs à un nombre binaire. Le bit de gauche, celui correspondant à la
plus haute puissance de 2, est associé à L3, alors que celui de droite, qui correspond à la
plus petite puissance de 2, est associé à L0. Par exemple 11012 correspond à .
Ces nombres sont ensuite écrits en base 10. L’exemple précédent s’écrit donc 13.

2) Pour les lignes 2 et 3 du tableau ci-contre, écrire le code, c’est-
à-dire la valeur décimale, correspondant aux lampes allumées.

3) Pour les lignes 4 et 5, colorier les lampes éteintes pour obtenir
le motif correspondant au code donné.

Code Lampes

13

10

5

7

9

3/5

Au lieu de faire un simple clignotement, elle envisage plutôt de faire un défilement des
lampes.
4) Par quel nombre, en base 10, faut-il multiplier un nombre pour décaler tous ses chiffres

en binaire d’un rang vers la gauche? Par exemple, pour passer de 11012 à 110102. Par 2
Le problème avec cette méthode, c’est qu’au bout d’un moment, le nombre binaire finit par
avoir plus de 4 bits comme dans l’exemple de la question précédente. Pour régler cela, elle
souhaite utiliser le ET bit à bit entre deux nombres binaires.

On applique l’opération booléenne ET entre le dernier bit du premier
nombre et celui du deuxième, puis le ET entre l’avant-dernier bit de
chacun des deux nombres et ainsi de suite. Il n’y a pas de retenues,
contrairement à une addition.

1 0 0 0 1 1 0 1
ET 0 1 1 0 1 0 1 1

0 0 0 0 1 0 0 1

5) Effectuer l’opération ci-contre.

Afin de ne garder que les 4 derniers bits d’un nombre binaire, il faut
faire le ET avec 11112 = 15. Si le deuxième nombre a plus de 4 bits,
on rajoute des 0 à gauche de 11112.

0 1 1 0 0 1 0 0
ET 0 1 0 1 0 1 1 0

0 1 0 0 0 1 0 0

6) Effectuer les opérations ci-contre.

On peut remarquer que pour certains
nombres A,

�� ��A ET 1111 = A alors que pour
d’autres nombres B,

�� ��B ET 1111 , B .

0 0 0 1 0 0 1 1
ET 0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 1 1 1 0
ET 0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 0

7) Compléter les opérations ci-dessous avec le plus grand A tel que
�� ��A ET 1111 = A et le

plus petit B tel que
�� ��B ET 1111 , B .

0 0 0 0 1 1 1 1 = A
ET 0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1 = A

0 0 0 1 0 0 0 0 = B
ET 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 , B
8) Donner la valeur décimale des nombres A et B trouvés à la question précédente.

A = 15 et B = 16.

Partie C : Assembleur
Elle construit son appareil avec un processeur programmable utilisant un jeu d’instructions
de type ARM et des nombres codés sur 8 bits. Pour simplifier, on supposera que le contenu
du registre R10 commande l’affichage des LEDs. Par exemple, si on place 13 dans le registre
R10, alors les lampes afficheront .
Voici le programme qu’elle a écrit et la signification des instructions utilisées.

1 MOV R0, #5
2 debut ADD R1, R0, R0
3 AND R0, R1, #15
4 CMP R0, R1
5 BEQ affich
6 ADD R0, R0, #1
7 affich MOV R10, R0
8 B debut

Assembleur Signification
MOV dest, op1 dest = op1
ADD dest, op1, op2 dest = op1+ op2
AND dest, op1, op2 dest = op1 ET op2

Fait le ET bit à bit
entre op1 et op2

CMP op1, op2 Aller à l’instruction
BEQ label label si op1 = op2
B label Aller à label

Le programme contient une boucle infinie qui est arrêtée lorsque l’appareil est éteint.

4/5

Nom et prénom :

9) Remplir le tableau ci-contre corres-
pondant aux deux premiers tours de
boucle du programme. Laissez les
cases vides lorsqu’un registre n’a pas
encore de valeur (comme R1 et R10
au début. Vous pouvez aussi laisser
vide la ligne 6 si elle n’est pas exé-
cutée dans un tour de boucle. Vous
pouvez remplir les cases en binaire
et/ou en décimal.

ligne R0 R1 R10
1 5 = 0101
2 5 = 0101 10 = 1010
3 10 = 1010 10 = 1010
6 10 = 1010 10 = 1010
7 10 = 1010 10 = 1010 10 = 1010
2 10 = 1010 20 = 10100 10 = 1010
3 4 = 0100 20 = 10100 10 = 1010
6 5 = 0101 20 = 10100 10 = 1010
7 5 = 0101 20 = 10100 5 = 0101

10) Remplir de la même manière le ta-
bleau ci-contre, mais en remplaçant
la première ligne par MOV, R0, #6.

11) Compléter les lampes ci-dessous qui
correspondent au registre R10 à la fin
de chacun des tours de boucle.

ligne R0 R1 R10
1 6 = 0110
2 6 = 0110 12 = 1100
3 12 = 1100 12 = 1100
6 12 = 1100 12 = 1100
7 12 = 1100 12 = 1100 12 = 1100
2 12 = 1100 12 = 1100 12 = 1100
3 8 = 1000 24 = 11000 12 = 1100
6 9 = 1001 24 = 11000 12 = 1100
7 9 = 1001 24 = 11000 9 = 1001
2 9 = 1001 24 = 11000 9 = 1001
3 2 = 0010 18 = 10010 9 = 1001
6 3 = 0011 18 = 10010 9 = 1001
7 3 = 0011 18 = 10010 3 = 0011
2 3 = 0011 18 = 10010 3 = 0011
3 6 = 0110 6 = 0110 3 = 0011
6 6 = 0110 6 = 0110 3 = 0011
7 6 = 0110 6 = 0110 6 = 0110

12) Finalement, elle décide de rajouter 2 LEDs, pour un total de 6.
a) Quelle ligne doit être modifiée dans le programme pour pouvoir gérer les 6 lampes

et quelle modification doit-elle faire? Il faut mettre AND R0, R1,#63 à la ligne 3.
b) Déterminer les valeurs, en base 10, prises successivement par R10 si on remplace la

première ligne par MOV, R0, #36. 36, 9, 18, 36

5/5

