
Lycée Les 3 Sources Bourg-Lès-Valence
NSI 1re – Thème 2 Année 2025-26

Les dictionnaires et les ensembles

Les dictionnaires
On a parfois besoin d’associer une valeur à une autre. Par exemple un âge à un nom. Pour
cela, on peut créer 2 listes, une avec les noms et l’autres avec les âges :

>>> noms = ["Alice", "Bob", "Charlie"]
>>> ages = [23, 31, 56]

Pour obtenir l’âge de Bob, il faut faire ages[noms.index("Bob")], ce qui n’est pas très lisible.
De la même manière, mettre à jour son âge est tout aussi lourd. On pourrait aussi utiliser
une seule liste de couples :

noms_ages = [('Alice', 23), ('Bob', 31), ('Charlie', 56)]

La recherche ou la modification des valeurs est encore plus compliquée.
C’est pourquoi de nombreux langages, dont Python, possèdent une structure spéciale appe-
lée dictionnaire qui permet de faire tout cela plus simplement. Il y a plusieurs façons de
créer un dictionnaire vide, ou non.

>>> dico_vide = {} # Dictionnaire vide
>>> dico_vide2 = dict() # Autre définition d'un dictionnaire vide
>>> dico = {"Alice" : 23, "Bob" : 31, "Charlie" : 56} # Définition directe
>>> dico2 = dict(noms_ages) # Définition à partir d'une liste de couples
>>> dico2
{'Alice': 23, 'Bob': 31, 'Charlie': 56}

On peut manipuler les dictionnaires de façon assez similaire aux listes.

>>> dico["Alice"] # Accès a une valeur
23
>>> dico["Bob"] = 32 # Modification d'une valeur
>>> dico["Daniel"] = 10 # Ajout d'une nouvelle valeur
>>> del dico["Charlie"] # Suppression d'une valeur
>>> dico # Verification
{'Alice': 23, 'Bob': 32, 'Daniel': 10}
>>> len(dico) # Longueur du dictionnaire
3
>>> "Charlie" in dico # Test d'appartenance
False
>>> "Alice" in dico
True

Les dictionnaires stockent deux types de données : les clefs (ici les noms) et les valeurs (ici
les âges). Ce sont des types spéciaux correspondant à des listes.

>>> dico.keys() # liste des clefs
dict_keys(['Alice', 'Bob', 'Daniel'])
>>> dico.values() # liste des valeurs
dict_values([23, 32, 10])
>>> dico.items() # liste des couples (clef, valeur)
dict_items([('Alice', 23), ('Bob', 32), ('Daniel', 10)])

1/2



Dictionnaires, recherche et parcours

Contrairement à une liste, tester si une clef se trouve dans le dictionnaire est quasi-immédiat,
peu importe la taille du dictionnaire. C’est parce qu’en interne, les clefs sont représentées
par des nombres, appelés hachages et qu’une table indique les valeurs associées à chaque
hachage. On parle de table de hachage. Comme dans un vrai dictionnaire, il n’est pas né-
cessaire de lire toutes les pages une par une pour trouver le mot cherché. On peut très rapi-
dement se déplacer dans les pages et ainsi trouver le mot cherché ou au contraire découvrir
qu’il n’y est pas. Lorsqu’on a besoin de faire des boucles où on fait des tests d’appartenance
à chaque tour et si le nombre de données à parcourir est assez grand, utiliser un dictionnaire
sera bien plus efficace et rapide qu’avec une liste.
Ainsi, la deuxième version de cette fonction est plus rapide que la première.

def decimal_vers_bin(v):
vus = [] # liste des restes
rep = "" # conv en binaire
while v not in vus:

vus.append(v)
d, v = fois_2(v)
rep = rep + str(d)

pos = vus.index(v)
...

def decimal_vers_bin(v):
vus = {} # dico des restes
rep = "" # conv en binaire
i = 0 # indice actuel
while v not in vus:

vus[v] = i
i = i + 1
d, v = fois_2(v)
rep = rep + str(d)

pos = vus[v]
...

Les clefs des dictionnaires doivent être de type immuable. C’est-à-dire que cela doit être
des valeurs qui ne peuvent pas être modifiées, comme les nombres (entiers ou réels), les n-
uplets et les chaînes de caractères. Au contraire, les listes et les dictionnaires sont mutables
et ne peuvent donc pas servir de clef.

Les ensembles
Si on a juste besoin de tester l’appartenance d’une valeur à un ensemble, sans avoir be-
soin de récupérer une valeur associée, on peut utiliser le type ensemble, qui est lui aussi
mutable. Cela revient essentiellement à utiliser un dictionnaire dans lequel on n’associe au-
cune valeur aux clefs. Si on ajoute un élément qui est déjà dans l’ensemble, il n’y a pas de
doublon.

>>> ensemble_vide = set() # Création d'un ensemble vide
>>> ensemble = {"Alice", "Bob", "Charlie"} # Création directe
>>> ensemble.add("Daniel") # Ajout d'un élément
>>> ensemble.add("Daniel") # Ne fait rien puisque Daniel y est déjà
>>> ensemble.remove("Alice") # On enlève Alice
>>> len(ensemble) # Nombre d'éléments dans l'ensemble
3
>>> ensemble
{'Bob', 'Daniel', 'Charlie'}
>>> "Marcel" in ensemble # Test d'appartenance
False

Par contre l’ordre d’ajout n’est pas forcément conservé dans l’ensemble. C’est aussi le cas
pour les dictionnaires, même si dans les dernières versions de Python, cet ordre est préservé.

2/2


