
Lycée Les 3 Sources Bourg-Lès-Valence
NSI 1re – Thème 6 Année 2025-26

Les listes Python

Les bases des listes
En Python, comme dans la majorité des langages, il est possible de construire un objet conte-
nant un ensemble ordonné de valeurs, appelé liste. Une liste est délimitée par des crochets
et les éléments sont séparés par des virgules :

>>> liste_val = [4, 1, 2, 6, 7]

La liste vide est notée []. Il est possible de rajouter un élément à la fin d’une liste :

>>> liste_val.append(15)
>>> liste_val.append(7)
>>> liste_val
[4, 1, 2, 6, 7, 15, 7]

Il est possible d’accéder à n’importe quel élément d’une liste, comme pour un texte :

>>> liste_val[0]
4
>>> liste_val[1]
1

>>> liste_val[-1]
7
>>> liste_val[-2]
15

Pour concaténer 2 listes, il suffit d’utiliser l’opérateur + ou extend :

>>> [6, 3, 1] + [4, 8] # Crée une nouvelle liste
[6, 3, 1, 4, 8]
>>> liste.extend([4, 8]) # Modifie la liste et ne renvoie rien

Exercice 1 :
1) On considère la liste valeurs = [2, 6, 14, 8, 0, -3].

Déterminer les valeurs des expressions suivantes :
a) valeurs[1] b) valeurs[5] c) valeurs[valeurs[0]]

2) On considère les instructions suivantes :

>>> liste1 = [3, 6, 1]
>>> liste2 = [4, 5]

Déterminer les valeurs des expressions suivantes :
a) liste1+liste2 b) liste2+liste1 c) liste1+liste1 d) liste2+liste2

3) Que vaut donnees après les instructions suivantes :

>>> donnees = [-8, 3, 2]
>>> donnees.append(5)
>>> donnees.append(9)

Génération des listes
Il y a plusieurs façons pour définir une liste de façon explicite :

>>> [0] * 5
[0, 0, 0, 0, 0]
>>> [1, 2] * 3
[1, 2, 1, 2, 1, 2]

>>> list(range(5))
[0, 1, 2, 3, 4]
>>> list('bonjour')
['b', 'o', 'n', 'j', 'o', 'u', 'r']

1/4

Python permet également de générer une liste en appliquant une fonction à un ensemble de
valeurs :

[f(x) for x in ITERABLE]

Cela permet de créer une liste en une seule ligne au lieu de passer par une boucle :

>>> [x**2 for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> [x//2 for x in [3, 1, 7]]
[1, 0, 3]

Il est même possible de filtrer la liste obtenue à l’aide d’une condition :

[f(x) for x in ITERABLE if TEST]

On peut obtenir la liste des entiers inférieurs à 50 qui sont multiples de 3 mais pas de 4 :

>>> [x for x in range(50) if x%3 == 0 and x%4 != 0]
[3, 6, 9, 15, 18, 21, 27, 30, 33, 39, 42, 45]

Exercice 2 : Déterminer la valeur des expressions suivantes :
1) [i+1 for i in range(5)]
2) [2*i for i in range(5)]

3) [2*i for i in range(50) if i < 4]
4) [i for i in range(10) if i%3 == 0]

En Python, les listes sont polymorphiques. C’est-à-dire qu’elles peuvent contenir plusieurs
types de données différents dans une même liste, y compris d’autres listes, comme
["mot", 4, 5.1, True, [1, 2]].

Parcours de listes

Les listes peuvent être parcourues
par valeur ou par indice.

for v in liste:
print(v)

for i in range(len(liste)):
print(liste[i])

Lorsqu’on veut parcourir une boucle, il faut donc se poser la question si l’indice est impor-
tant, et dans ce cas on parcourt par indice, sinon on peut parcourir par valeurs. En cas de
doute, le parcours par indice permet toujours de faire ce qu’on aurait fait avec un parcours
par valeurs.

Exercice 3 : On veut écrire la fonction longueur qui prend en paramètre une liste liste et
qui renvoie la longueur de liste, c’est-à-dire, le nombre d’éléments qu’elle contient.
1) Déterminer le résultat attendu pour les listes suivantes :

a) longueur([3, 4])
b) longueur([9, 8, 1, 7])

c) longueur([0])
d) longueur([])

2) Comment déterminer le résultat de l’expression suivante :
longueur([2, 1, 351, 7841, 112, 0, -12134, 215, 41, -9, 0, 1, 2, 0, 7, 8])

3) Compléter le code de la fonction :

def longueur(liste):
. . . .
for v in liste:

. . .
return . . .

>>> longueur([])
0

>>> longueur([4, 5, 2])
3

Cette fonction existe déjà en Python et se note len(liste).

Thème 6 : Les listes Python 2/4 NSI 1re

Exercice 4 : Compléter le code de la fonction est_dans qui prend comme paramètres une
valeur e et une liste liste, et qui renvoie un booléen indiquant si e est dans liste.

def est_dans(e, liste):
for v in liste:

if:
return . . .

return . . .

>>> est_dans(4, [2, 3])
False

>>> est_dans(3, [2, 3])
True

Cette fonction existe déjà en Python et se note “e in liste”.

Exercice 5 : On souhaite écrire une fonction indice qui prend comme paramètres une va-
leur e et une liste liste, et qui renvoie l’indice de la première occurrence de e dans liste,
en comptant à partir de 0 et −1 s’il n’est pas dans liste.
1) Déterminer le résultat des expressions suivantes :

a) indice(3, [3, 4])
b) indice(4, [3, 4])
c) indice(5, [3, 4])

d) indice(1, [2, 1, 7, 1, 3])
e) indice(9, [8, 3, 7, 1, 3, 8])
f) indice(2, [2, 3, 7, 1, 9, 1, 2])

2) Déterminer le résultat de l’expression suivante :
indice(3233323223, [323323223, 323332323, 3233323223, 32233323223])

3) Compléter le code de la fonction indice(e, liste).

def indice(e, liste):
for i in range(len(liste)):

if: # quelque chose avec liste[i]
return . . .

return . . .

Cette fonction existe déjà en Python et se note liste.index(e). Par contre, si e n’est pas
dans liste, cela provoque une erreur.

Exercice 6 : On souhaite écrire une fonction compter qui prend comme paramètres une
valeur e et une liste liste, et qui renvoie le nombre de fois où e apparaît dans liste.
1) Déterminer le résultat des expressions suivantes :

a) compter(5, [5, 5, 1])
b) compter(1, [5, 5, 1])
c) compter(9, [5, 5, 1])

d) compter(2, [])
e) compter(4, [3, 4, 4, 1])
f) compter(4, [4, 1, 4, 3])

2) Est-ce qu’il est nécessaire de connaître les indices des éléments parcourus ou juste leur
valeur?

3) Compléter le code de la fonction compter(e, liste).

def compter(e, liste):
. . .
for . . . in:

if:
.

return . . .

Cette fonction existe déjà en Python et se note liste.count(e).

Thème 6 : Les listes Python 3/4 NSI 1re

Exercice 7 : On souhaite écrire une fonction qui permet de déterminer le maximum d’une
liste.
1) Déterminer le maximum de la liste suivante :
[32232323, 32222323, 32322323, 32232333, 33232323, 32233223]

2) Est-ce qu’il est nécessaire de connaître les indices des éléments parcourus ou juste leur
valeur?

3) Écrire le code de la fonction maximum qui prend comme paramètre une liste non vide
nombres d’entiers et qui renvoie le maximum des valeurs de nombres.

def maximum(nombres):

>>> maximum([5, 1, 8, 14, 2])
14
>>> maximum([15])
15

>>> maximum([-9, -27, -2, -48])
-2
>>> maximum([9, 2, -57, 1, 8])
9

Cette fonction existe déjà en Python et se note max(nombres). De même, il existe min(nombres).

Exercice 8 : On souhaite faire une fonction qui calcule la moyenne des valeurs d’une liste.
1) Expliquer comment calculer la moyenne de la liste [15, 12, 17, 15, 14].
2) Est-ce qu’il est nécessaire de connaître les indices des éléments parcourus ou juste leur

valeur?
3) Écrire le code de la fonction moyenne qui prend en paramètre une liste non vide valeurs

de nombres qui calcule la moyenne des valeurs de valeurs.
Vous ne devez pas utiliser la fonction len.

def moyenne(valeurs):

>>> moyenne([20])
20.0
>>> moyenne([20, 10])
15.0

>>> moyenne([5, 5, 5, 5, 5])
5.0
>>> moyenne([3, 2, 5, 1, 7, 4])
3.6666666666666665

Thème 6 : Les listes Python 4/4 NSI 1re

